67 research outputs found

    Loop Calculus for Non-Binary Alphabets using Concepts from Information Geometry

    Full text link
    The Bethe approximation is a well-known approximation of the partition function used in statistical physics. Recently, an equality relating the partition function and its Bethe approximation was obtained for graphical models with binary variables by Chertkov and Chernyak. In this equality, the multiplicative error in the Bethe approximation is represented as a weighted sum over all generalized loops in the graphical model. In this paper, the equality is generalized to graphical models with non-binary alphabet using concepts from information geometry.Comment: 18 pages, 4 figures, submitted to IEEE Trans. Inf. Theor

    Properties and Construction of Polar Codes

    Full text link
    Recently, Ar{\i}kan introduced the method of channel polarization on which one can construct efficient capacity-achieving codes, called polar codes, for any binary discrete memoryless channel. In the thesis, we show that decoding algorithm of polar codes, called successive cancellation decoding, can be regarded as belief propagation decoding, which has been used for decoding of low-density parity-check codes, on a tree graph. On the basis of the observation, we show an efficient construction method of polar codes using density evolution, which has been used for evaluation of the error probability of belief propagation decoding on a tree graph. We further show that channel polarization phenomenon and polar codes can be generalized to non-binary discrete memoryless channels. Asymptotic performances of non-binary polar codes, which use non-binary matrices called the Reed-Solomon matrices, are better than asymptotic performances of the best explicitly known binary polar code. We also find that the Reed-Solomon matrices are considered to be natural generalization of the original binary channel polarization introduced by Ar{\i}kan.Comment: Master thesis. The supervisor is Toshiyuki Tanaka. 24 pages, 3 figure

    Channel Polarization on q-ary Discrete Memoryless Channels by Arbitrary Kernels

    Full text link
    A method of channel polarization, proposed by Arikan, allows us to construct efficient capacity-achieving channel codes. In the original work, binary input discrete memoryless channels are considered. A special case of qq-ary channel polarization is considered by Sasoglu, Telatar, and Arikan. In this paper, we consider more general channel polarization on qq-ary channels. We further show explicit constructions using Reed-Solomon codes, on which asymptotically fast channel polarization is induced.Comment: 5 pages, a final version of a manuscript for ISIT201
    corecore